首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   3篇
化学   11篇
数学   4篇
物理学   87篇
  2022年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   9篇
  2011年   9篇
  2010年   4篇
  2009年   12篇
  2008年   10篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
The objective of this work is to study electron-vibrational interaction (EVI) and concentration quenching and their manifestation in experimental photoluminescence spectra of Cu+ ion in various lithium based phosphors namely, Li2SO4, LiNaSO4 and LiKSO4. The main parameters of EVI, such as the Stokes shift, Huang-Rhys factor and zero-phonon line positions, were estimated. The studied systems shows strong electron lattice coupling. The validity of results was established by modeling the shape of the emission spectra, which was found to be in good agreement with experimental photoluminescence spectra. The concentration quenching study is also carried out for these compounds. The studied systems correspond to the nearest neighbor energy transfer mechanism.  相似文献   
2.
The structural and elastic properties of cerium chalcogenides (CeZ, Z = S, Se, Te) under high pressure have been investigated by using the potential model considered up to third nearest neighbor interaction. The computed values of B1-B2 phase transition pressure, equation of state (compression curve), bulk modulus, its first order pressure derivative and elastic constants in the case of cerium chalcogenides agree well with the experimental results. The present study shows the anomalous behavior of cerium chalcogenides in comparison to the alkaline earth chalcogenides, due to the presence of Kondo effect and reentrant valence behavior of Ce in cerium chalcogenides.  相似文献   
3.
The structural, electronic, elastic and bonding properties of four transition metal carbides, ScC, YC (group III), VC and NbC (group V), have been investigated systematically using the first principles density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange correlation has been used for the calculation of the total energy. The ground state properties, such as equilibrium lattice constant, bulk modulus, are computed and compared with theoretical and experimental data. The electronic and bonding patterns of the two groups of compounds have been analyzed quantitatively and compared with the available data. It is clear from band structures that all the four transition metal monocarbides are metallic in nature. Analysis of elastic constants reveals that the carbides of group III are ductile in nature while those of group V are brittle.  相似文献   
4.
Ab initio calculation on B2-cadmium rare earth (RE), CdRE (RE=La, Ce and Pr) intermetallics has been performed at T=0 K with respect to their structural, electronic and thermal properties. The structural and electronic properties are derived using self-consistent tight binding linear muffin tin orbital method at ambient and at high pressure. Other properties like lattice parameter, bulk modulus, density of states, electronic specific heat coefficient, cohesive energy, heat of formation, Debye temperature and Grüneisen constant for CdRE are also estimated. The RE-f effect can be seen in CdPr in terms of variation in the density of states and opens a possibility of structural instability. A pressure induced variation of Debye temperature is also presented for three cadmium rare earth intermetallics.  相似文献   
5.
6.
Rasna Thakur  N. K. Gaur 《Ionics》2014,20(1):65-71
The thermodynamic properties of alkaline earth ruthenate ARuO3 (A?=?Ca, Sr, and Ba) perovskites have been investigated for the first time by means of a modified rigid ion model at temperature 1 K?≤?T?≤?300 K. As strong electron–phonon interactions are present in these compounds, the lattice contribution to the specific heat deserves proper attention. The values of specific heat calculated by us have shown remarkably good agreement with corresponding experimental data. We have found that in ARuO3 (A?=?Ca, Sr, and Ba) ruthenate family, Debye temperature increases inversely with the ionic radius of the alkaline earth A cations. In addition, the results on the temperature dependence of thermal expansion coefficient (α), cohesive energy (?), molecular force constant (f), Reststrahlen frequency (υ), Debye temperature (θ D), and Grüneisen parameter (γ) are also reported.  相似文献   
7.
Harsha Jalori  AK Gwal 《Pramana》2001,56(6):779-784
Recent observation and theoretical investigations have led to the significance of electrostatic ion cyclotron (EIC) waves in the electrodynamics of acceleration process. The instability is one of the fundamental of a current carrying magnetized plasma. The EIC instability has the lowest threshold current among the current driven instabilities. On the basis of local analysis where inhomogeneities like the magnetic shear and the finite width current channel, have been ignored which is prevalent in the magnetospheric environment. On the basis of non-local analysis interesting modification has been incorporated by the inclusion of magnetic shear. In this paper we provide an analytical approach for the non-local treatment of current driven electrostatic waves in presence of parallel electric field. The growth rate is significantly influenced by the field aligned electron drift. The presence of electric field enhances the growth of EIC waves while magnetic shear stabilizes the system.  相似文献   
8.
The structural phase transition and electronic properties at ambient (B 1-phase) and high pressure (B 2-phase) of heavy rare earth monoantimonides (RESb; RE?=?Ho, Er, and Tm) have been studied theoretically using the self-consistent tight binding linear muffin tin orbital method. These compounds show metallic behavior under ambient condition and undergo a structural phase transition to the B 2 phase at high pressure. We predict a structural phase transition from the B 1 to B 2 phase in the pressure range 30.0–35.0?GPa. Apart from this, the ground state properties, such as lattice parameter and bulk modulus are calculated and compared with the available theoretical and experimental results.  相似文献   
9.
The structural and elastic properties of praseodymium monochalcogenides (PrX: X = S, Se, Te) and monopnictides (PrY: Y = P, As, Sb, Bi) with NaCl-type structure have been investigated by using an interionic potential theory with necessary modification to include the effect of Coulomb screening due to the delocalized f-electrons of rare earth ion. The calculations are done at ambient as well as at high pressure. The structure of the high pressure phase of PrX compounds is CsCl-type while all the PrY compounds have been found to undergo from their initial NaCl-type structure to high pressure body centered tetragonal (BCT) structure, which can be seen as the distorted CsCl-type with c/a ratio ≈ 0.82–0.87. The calculated transition pressures are in good agreement with the experimental results. The elastic properties like second-order elastic constants for PrX, Y compounds are calculated for the first time. The nature of the bonding is also predicted by calculating the distance between the ions with the increasing pressure.  相似文献   
10.
R K Singh  C N Rao 《Pramana》1990,34(4):297-302
The variation of the second-order elastic constants (SOECs) and the longitudinal and shear modulii with hydrostatic pressure for the lead fluoride (PbF2) has been investigated for the first time by means of a three-body force potential (TBP) model. The significance of three-body interactions (TBI) has been clearly demonstrated in reproducing the elastic constant variations and the pressure derivatives of SOECs of PbF2. The equation of state for this crystal has also been reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号